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Abstract: Mangroves are found throughout the tropics, providing critical ecosystem goods 

and services to coastal communities and supporting rich biodiversity. Despite their value, 

world-wide, mangroves are being rapidly degraded and deforested. Madagascar contains 

approximately 2% of the world’s mangroves, >20% of which has been deforested  

since 1990 from increased extraction for charcoal and timber and conversion to small to 

large-scale agriculture and aquaculture. Loss is particularly prominent in the northwestern 

Ambaro and Ambanja bays. Here, we focus on Ambaro and Ambanja bays, presenting 

dynamics calculated using United States Geological Survey (USGS) national-level 

mangrove maps and the first localized satellite imagery derived map of dominant  

land-cover types. The analysis of USGS data indicated a loss of 7659 ha (23.7%) and a 

gain of 995 ha (3.1%) from 1990–2010. Contemporary mapping results were 93.4% 

accurate overall (Kappa 0.9), with producer’s and user’s accuracies ≥85%. Classification 

results allowed partitioning mangroves in to ecologically meaningful, spectrally distinct 

strata, wherein field measurements facilitated estimating the first total carbon stocks for 

mangroves in Madagascar. Estimates suggest that higher stature closed-canopy mangroves 

have average total vegetation carbon values of 146.8 Mg/ha (±10.2) and soil organic 
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carbon of 446.2 (±36.9), supporting a growing body of studies that mangroves are amongst 

the most carbon-dense tropical forests. 

Keywords: Madagascar; mangrove; carbon; Landsat; dynamics; Reducing Emissions from 

Deforestation and forest Degradation (REDD+); Payments for Ecosystem Services (PES) 

 

1. Introduction 

Mangroves are found in inter-tidal areas in over 120 countries between 30° N and S latitude and 

provide a broad range of important ecosystem goods (e.g., food; fuel; construction materials; 

medicine) and services (e.g., storm protection; erosive barriers; breeding, nesting, nursing and  

feeding grounds for marine, pelagic and terrestrial fauna; water filtration) for surrounding coastal 

communities [1–11]. Mangrove ecosystems also support high floral and faunal biodiversity [9,12–14] 

and sequester significant amounts of CO2 [15,16]. While numerous studies have measured  

above-ground biomass in mangrove trees (e.g., [17–26]), comparatively few have quantified  

above- and below-ground carbon (C) pools, including soil (i.e., [15,27–34]); however, it is the deep, 

organic material enriched soils that contain the vast majority of C stocks [35–38]. Factoring in soil, 

mangroves have been found to be amongst the most carbon-dense forests in the tropics, with similar or 

greater above- and exceptionally larger below-ground stocks compared with the terrestrial systems 

reported in several studies [15,27,32–34,39]. Collectively, despite representing only about 0.7% of 

tropical forests, mangroves are thought to collectively store as much as 20 petagrams of C [15,17,40]. 

Despite their tremendous importance, within the last 50 years, global mangrove loss has been rapid 

and widespread, with estimates of 30%–50% since 1960 [41], 25%–35% from 1980–2000 [42–44] and 

36% since 1990 [7]. Annual loss is estimated at around 1%–2%, exceeding the deforestation rates of 

inland tropical forests [4,42,45,46]. The primary anthropogenic drivers of loss include increasing 

coastal population and development, mounting economic pressures, small- to industrial-scale 

conversion to agriculture and aquaculture, over-extraction of forest products, and erosion, 

sedimentation and siltation from upstream intensive farming and terrestrial deforestation [47–54]. The 

principal natural drivers of loss include forest succession, hydrological dynamics and the impacts of 

extreme weather events (e.g., cyclones) and sea-level rise, which are projected to increase in frequency 

and magnitude, due to climate change [4,8,47,53,55–58]. Degradation and deforestation result in 

substantial greenhouse gas emissions if deep organic soil layers are disturbed [15,59–61]. Much of the 

world’s remaining mangroves are already degraded, and if current trends continue, most of the 

remaining extent could become functionally valueless within the 21st century [41,45,62]. 

Globally, the collective importance and value of mangrove ecosystems is receiving an increasing 

amount of attention [16,63–67]. Owing to their value and rate of loss, up-to-date information 

representing the extent and status is critical for effective management and decision making [11]. 

Employing remotely sensed data for mapping and monitoring mangrove ecosystems is already well 

established [11,68]. Maps produced from remotely sensed data can enable the partitioning of mangrove 

ecosystems by ecological differences and statistically distinct C stock values. Of particular note, 

Landsat imagery is freely available, offers >40 years of data and has proven critical for both  
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locating and quantifying mangrove extent and loss and partitioning mangrove ecosystems to estimate 

C stocks [40,69–79]. 

Madagascar contains Africa’s fourth largest extent of mangroves and, as of 2005, represented 2% of 

the global distribution, covering approximately 2800 km2 [7,40,80]. In keeping with global trends, 

Madagascar’s mangroves are being rapidly degraded and, in some areas, completely deforested from 

logging for commercial timber and charcoal production, land-use conversion to agriculture and 

commercial small-scale (artisanal) and large-scale aquaculture. Anthropogenic loss is particularly 

significant in Madagascar’s second largest mangrove ecosystem in the northwestern Ambanja and 

Ambaro bays. Existing national-level maps include contemporary and historical areal extents for 

mangroves and provide the information required for quantifying the dynamics; however, these data 

lack the detail required for comprehensive ecosystem characterization and estimation of C stocks for 

distinct mangrove types. While there have been several localized mangrove mapping efforts in 

Madagascar for Mahajamba Bay (i.e., [81–83]), Betsiboka Bay [84] and the Mangoky Delta [85], there 

are none published for Ambanja and Ambaro bays. Additionally, no studies have reported above- and 

below-ground C stocks, including soil, for any of Madagascar’s mangroves. Here, we use existing 

national-level maps to calculate the long-term dynamics and employ Landsat data to produce the first 

ever localized map (circa 2010) of mangrove ecosystems and surrounding terrestrial land-cover types 

for Ambanja and Ambaro bays. Using the localized map to partition the mangroves in to ecologically 

meaningful strata, we also present the first estimates of total C stocks for Malagasy mangroves and 

compare them with published values for other terrestrial forest types. 

2. Experimental Section 

2.1. Study Area 

The area of interest (AOI) includes the combined marine and terrestrial extent of Ambanja and 

Ambaro bays in northwest Madagascar (centered on latitude 48° 30’ East, longitude 13° 26’ South) 

(Figure 1). Both bays are lined with extensive mangroves, collectively totaling approximately  

26,000 hectares (ha). In Madagascar, the AOI mangroves are surpassed in area only by Mahajamba 

Bay [86]. In the AOI, the semi-diurnal tidal range varies between maximums of 3–3.5 m, and the  

climate is sub-humid tropical, typified by a relatively dry and cool period from May–October and 

comparatively hotter and wetter weather influenced by periodic cyclones from November–April [87]. 

Alluvial and lake deposits predominantly characterize the underlying geology, and the comparative 

abundance of rainfall and freshwater contributes to higher stature mangrove trees than further  

south [80,88]. In the AOI and throughout coastal Madagascar, communities are extremely vulnerable 

to climate change, and mangroves are vital to their present and future wellbeing. The range, frequency 

and magnitude of anthropogenic activities within mangroves continue to rise for numerous reasons, 

including a lack of governance and increasing population. 
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Figure 1. The area of interest includes the combined marine and terrestrial extent 

encompassed by a seven kilometer coastal buffer of Ambanja and Ambaro bays.  

One-hundred ninety-one classification reference areas and 55 mangrove carbon plots are 

shown. The background image is the near-infrared band (i.e., band 4) from a (Global Land 

Survey) GLS 2010 Landsat image, projected to Universal Transverse Mercator (UTM). 
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2.2. Inventory of Existing Mangrove Maps and Assessment of Mangrove Dynamics 

National-level datasets providing mangrove coverage over the AOI include maps produced by or 

described in Mayaux et al. [89], the Critical Ecosystem Partnership Fund (CEPF) Madagascar 

Mapping Project [90], Harper et al. [91], Giri and Muhlhausen [80] and Giri [86]. Mayaux et al. [89] 

used 1-km Satellite Pour l’Observation de la Terre (SPOT) data to map six dominant vegetation cover 

types, including mangroves, representing coverage in 1998/1999. The CEPF [90] used Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Landsat data to produce a 15-class vegetation 

map circa 2001, including a mangrove class. Harper et al. [91] used Landsat data to map forest cover, 

including mangroves, for 1973, 1990 and 2000. Using methods detailed in Giri and Muhlhausen [80], 

Chandra Giri and colleagues at the United States Geological Survey (USGS) produced  

Landsat-derived maps representing two classes (i.e., mangrove and non-mangrove) for 1973, 1990, 

2000, 2005 and 2010 [86]. To determine which dataset provided the most representative mangrove 

coverage, all maps were compared with reference to Landsat composites, finer spatial resolution 

imagery viewable through Google Earth and preliminary field observations. The coverage deemed 

most representative was used to calculate the estimates for mangrove dynamics (i.e., gain, loss and 

persistence) within the AOI. 

2.3. Acquisition and Pre-Processing of Remotely Sensed Data 

A Global Land Survey (GLS) Landsat Enhanced Thematic Mapper (ETM)+ scene (path/row: 

159/69) was acquired from the USGS Earth Resources Observation and Science Center [92] providing 

wall-to-wall coverage over the AOI from June 9 2010. GLS data are prepared by the USGS and the 

National Aeronautics and Space Administration, providing mostly cloud-free, 30-meter (m) spatial 

resolution, orthorectified (i.e., to a Shuttle Radar Topography Mission (SRTM) digital elevation model 

(DEM)) Landsat scenes for multiple eras (e.g., 2000, 2005 and 2010 editions) [93]. The Landsat scene 

was atmospherically corrected using the Cos(t) model, which estimates the effects of absorption by 

atmospheric gases and Rayleigh scattering, removes systematic atmospheric haze and converts image 

units to at-surface reflectance [94]. 

Based on distance to coastline as a mangrove habitat requirement [75,77,95], a 7-km coastal buffer 

mask was applied. To further exclude areas where mangrove habitat and associated ecosystems were 

observed not to exist, portions of the imagery >30 m in elevation were removed using an SRTM DEM 

height mask. SRTM data have previously been associated with field measurements to provide 

reasonable estimates of mangrove forest canopy heights (e.g., [96–98]). Reducing the extent of the 

area to be classified through masking has been shown to raise accuracy by decreasing spectral 

variation and confusion amongst the potential range of mapped classes [39]. Preliminary field-recorded 

height measurements, existing mangrove maps and finer spatial resolution satellite imagery  

viewable in Google Earth were utilized to determine the thresholds for isolating low-lying coastal 

scene components. 
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2.4. Definition and Refinement of Mangrove and Surrounding Land-Cover Categories 

Using Landsat ETM+ bands 1–5 and 7 as input, an unsupervised iterative self-organizing 

classification algorithm (i.e., ISOCLUST) was employed to group pixels into clusters representing 

prominent spectral components and remove areas dominated by water and shadow. Unsupervised 

classification is a common preliminary step in the detection and delineation of mangrove and closely 

related ecosystem types, having been employed in numerous studies [40,78,80,98–101]. Existing 

national-level land-cover and mangrove maps and high spatial resolution imagery viewable through 

Google Earth were referenced to iteratively aggregate and label clusters according to suspected 

dominant mangrove and other land-cover types (Table 1). Throughout the remote sensing literature, 

the definition of “mangrove” is extremely variable, at times referring to individual trees,  

mangrove-related flora or entire ecosystems [11,102]. Our classes are based on dominance by true 

mangroves, defined by Tomlinson [103] as salt-tolerant halophytic trees and shrubs occurring 

exclusively in the tidal/inter-tidal zone. Mangrove sub-class labels were initially assigned based on 

broad canopy-cover categories thought to represent distinct stature and density characteristics. 

Table 1. Mapped classes and descriptions. 

Class Description of typical constituents 
Class can also 
include 

Savannah mosaic of dry grass, exposed soil and extremely sparse trees/shrubs 
senesced rice; 
reeds 

Woodland mosaic of dry grass and scattered trees/shrubs; canopy <30% closed 
orchard 
agriculture 

Active cultivation sugar cane, rice, reeds 
Closed-canopy 
terrestrial forest 

closed-canopy terrestrial forest; canopy >60% closed 
 

Open-canopy 
terrestrial forest 

open-canopy terrestrial forest; canopy 30%–60% closed 
 

Closed-canopy 
mangrove 

tall, mature stands; canopy >60% closed 
extremely dense 
younger stands 

Open-canopy 
mangrove I 

young, short-medium trees; canopy 30%–60% closed; influenced by 
background soil/mud 

naturally open; 
very degraded tall

Open-canopy 
mangrove II 

stunted short trees, very sparse; canopy ≥10% closed; dominated by 
background soil/mud  

Deforested 
mangrove 

mosaic of stumps, scattered trees; canopy <30% closed; greatly 
influenced by exposed soil/mud  

Exposed soil 
inactive agri/aquacultural fields; extremely patchy savannah; 
extremely dry tanne (mud-flats)  

Exposed mud 
mangrove/ocean interface; river sediment; wet tannes (mud-flats); 
inactive aquaculture ponds  

To confirm and refine initial class definitions and ensure representative classification, reference 

data were acquired in February, 2012, during a field survey conducted using a stratified random 

sampling design, wherein potential plot locations were randomly targeted within mangrove and 

surrounding land-cover types. A total of 22 100 × 100 m (i.e., hectare-sized) nested classification 
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reference areas were established within mangroves, wherein height, species dominance, stature, age, 

density, canopy-cover, micro-relief, level of tidal-inundation and the impact of natural and 

anthropogenic disturbance were estimated qualitatively. Hectare-sized plots were used to ensure that 

reference areas representing different mangrove ecosystem types could be confidently located within 

the Landsat image. Within each reference plot, the diameter at 130 or 30 centimeters (cm) (depending 

on the tree height), height and crown dimensions were measured using a diameter tape and a Vertex 

hypsometer for representative examples of each mangrove species present in five systematically 

located 10 × 10 m sub-plots. In each sub-plot, a densiometer was also used to quantify canopy-cover, 

and litter, understory, regeneration, stumps and standing dead-wood were inventoried. Additional 

reference areas were established within all non-mangrove classes (see Table 1), wherein extensive 

field notes and photographs recorded the variability and level of representation. Within all reference 

areas, geographic coordinates were recorded using a Garmin GPSmap 62sc global positioning system 

(GPS) unit, which averaged the location in the center for the duration of sampling. Following the 

fieldwork, through exploiting the familiarity gained with the appearance and location of target 

mangrove and surrounding land-cover types, additional areas were located to augment field-collected 

data with reference to imagery viewable in Google Earth. In total, 71 90 × 90 m (3 × 3 pixel) reference 

areas representing mangrove types and 120 representing non-mangrove classes were delineated. For all 

classes, at least 33% of the classification reference data was randomly withheld to assess  

map accuracy. 

2.5. Image Classification 

The maximum likelihood (ML) algorithm was employed for pixel-based classification of Landsat 

bands 1–5 and 7. Numerous studies support ML as an effective and robust algorithm for classifying 

mangrove habitat with medium spatial resolution remotely sensed data [77,79,81,97,104–109]. 

Accuracy was quantitatively assessed using a confusion matrix to cross-tabulate mapped classes 

against independent validation data. In addition, the Kappa index of agreement was used to assess the 

extent to which the classification was better than random [110]. Adopting an approach described by 

Giri and Muhlhausen [80] and Giri et al. [40], the classified map was also divided into a 

geographically explicit grid in Google Earth, facilitating comparisons with existing maps and finer 

spatial resolution satellite imagery to identify additional classification error. The classified map  

was further compared with the best available mangrove coverage data for the AOI, making reference 

to Landsat color composites, finer spatial resolution imagery viewable through Google and  

field observations. 

2.6. Mangrove Carbon Stocks 

To calculate biomass and, subsequently, to estimate C stocks, field surveys were conducted in  

April–May and August–September, 2012, using a modified version of the measurement protocol 

outlined in Kauffman and Donato [39], employing a stratified sampling design, wherein plots were 

systematically located within dominant mangrove cover types. Mangrove strata were defined based on 

the results of ML classification. Fine spatial resolution imagery viewable in Google Earth was used to 

eliminate potential plots based on inaccessibility, proximity to class transitions and map error. A total 
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of 55 rectangular nested carbon plots were established (Figure 1). Plots had a default size of  

10 × 10 m, but were enlarged to 20 × 20 m if required, to capture ecological variability. All C plots 

consisted of an inner plot within the main plot (i.e., nested design). Within the inner plot (5 × 5 or  

10 × 10 m, depending on the plot size), all the trees with a diameter <5 cm were measured. Throughout 

the entire plot (10 × 10 or 20 × 20 m, depending on the plot size), all the trees with a diameter >5 cm 

were measured. Tree measurements included species type, height, diameter (at 130 or 30 cm, 

depending on height) and the quality of the lead stem, from which plot-level stature, species 

dominance, density and biomass were derived. Information about the geomorphology (i.e., location, 

topography) and site conditions (e.g., salinity) was also collected. Canopy-cover was systematically 

estimated to further assess mangrove labels. For standing dead trees and stumps, heights and diameters 

were measured to document degradation. Regeneration (i.e., seedlings and saplings), lying-dead wood, 

leaf-litter, epiphytes and the understory were inventoried, but not quantitatively sampled, as their 

carbon pools were considered negligible [27]. Soil depth was measured randomly in each quadrat and 

at the plot-center with a 3-m metal rod. Soil samples were extracted at the plot-center using a soil corer 

at 0–15, 15–30, 30–50, 50–100 and 100–150 cm. Plot locations were recorded at the plot center using a 

Garmin GPSmap 62sc GPS unit. 

The strong allometric relationships between tree height, diameter at breast height and biomass were 

used to estimate above-ground biomass and to calculate carbon stocks [111,112]. Equations were 

selected following a thorough review of the literature and expert advice (Table 2). The below-ground 

biomass of trees was calculated using a generalized equation developed by Komiyama et al. [113].  

The biomass of standing dead wood was calculated using equations in Kauffman and Donato [39].  

The bulk density (i.e., oven dry sample mass(g)/volume of the sample (cm3)) and the organic carbon 

content of the soil samples were determined by the Laboratoire des Radio Isotopes (LRI) of the 

University of Antananarivo in Madagascar’s capitol city of Antananarivo. To establish the mass of the 

soil samples divided by the sample volume (i.e., bulk density: g/cm3), the LRI first placed wet soil 

samples in a ventilated oven at 105 °C for 24 h. The weight of dried samples and empty soil containers 

were then recorded and each oven-dried sample’s mass divided by the sample’s volume. To determine 

soil organic carbon (SOC) content, a modified Walkley–Black method was employed, which involved 

oxidizing soil organic matter without external heat using an H2SO4 solution and potassium  

dichromate (K2Cr2O7). Further details on this modified Walkley–Black approach are available in 

Schumacher [114], Mikhailova et al. [115], De Vos et al. [116], Meersmans et al. [117] and  

Simpson [118]. 
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Table 2. Allometric equations employed for calculating above-ground biomass (B).  

dbh refers to diameter at breast height; D represents diameter; H stands for height;  

p = wood density. 

Species Allometric equation Wood density [119] References

Avicennia marina B = 0.1848 × dbh2.3524 0.661 [120] 
Bruguiera gymnorrhiza (leaves) B = 0.0679 × dbh1.4914 0.741 [121] 
Bruguiera gymnorrhiza (stem) B = 0.464 × (dbh2 × H)0.94275 × p 0.741 [22] 
Ceriops tagal (dbh 2–18 cm) B = 10−0.7247 × dbh2.3379 0.803 [121] 
Ceriops tagal (dbh 18–25 cm) B = 10−0.494 × dbh2.056 0.803 [122] 
Heritiera littoralis (leaves) B = 0.0679 × dbh1.4914 1.074 [121] 
Heritiera littoralis (stem) B = 0.464 × (dbh2 × H)0.94275 × p 1.074 [22] 
Lumnitzera racemosa B = 0.0214 × (dbh2 × H)1.05655 × p 0.565 [22] 
Rhizophora mucronata (leaves) B = 0.0139 × D2.1072 0.867 [121] 
Rhizophora mucronata (root) B = 0.0068 × dbh3.1353 0.867 [121] 
Rhizophora mucronata (stem) B = 0.0311 × (dbh2 × H)1.00741 × p 0.867 [22] 
Sonneratia alba B = 0.0825 × (dbh2 × H)0.89966 × p 0.78 [22] 
Xylocarpus granatum B = 0.0830 × (dbh2 × H)0.89806 × p 0.7 [22] 

3. Results and Discussion 

3.1. Overview of Existing Mangrove Maps 

Comparisons confirmed that the USGS-produced maps [86] offered the most representative 

historical and contemporary areal estimates of Ambanja and Ambaro bays’ mangroves. Owing to the 

use of moderate spatial resolution Landsat data, the USGS maps provided greater detail than those  

derived from coarse resolution SPOT data by Mayaux et al. [89]. Other national-level assessments 

involved Landsat data, but their scope included numerous terrestrial forest classes  

(i.e., [90,91]), resulting in less representative mangrove classes. The USGS products were the only 

maps to focus solely on mangrove coverage and to provide relatively contemporary (i.e., 2010) 

coverage; all others represented multiple forest classes for time periods nearly or more than 10 years 

earlier. For further details associated with comparisons between Madagascar’s existing mangrove 

datasets, see Giri and Muhlhausen (2008) [80]. Using USGS-produced 1990, 2000 and 2010 maps as 

input, the analysis of historic dynamics indicated that from 1990–2000, Ambanja and Ambaro bays’ 

mangroves decreased by 2473 ha (7.7%) and gained 466 ha (1.4%). From 2000–2010, there were  

5672 ha of loss (18.7%) and 1104 ha of gain (3.3%). Taken collectively, from 1990–2010, mangroves 

experienced a loss of 7659 ha (23.7%), a gain of 995 ha (3.1%) and persistence over 24,669 ha 

(76.3%) (Figure 2). 
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Figure 2. Mangrove dynamics from 1990–2000 and 2000–2010. Persistence, loss and gain 

were calculated using national-level mangrove maps produced by the United States 

Geological Survey (USGS). 
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3.2. Spectral Separability and Classification Results 

Results indicate that at certain wavelengths, all mapped classes were spectrally distinguishable 

(Figure 3). The near-infrared (NIR) and short-wave infrared (SWIR) were particularly useful for 

representing mangrove classes. Established properties of vegetation in the NIR and SWIR help to 

provide an ecologically meaningful context for the observed separability. In band 4 (i.e., NIR:  

0.76–0.90 micrometers (µm)), spectral contrast was likely driven by the transitional red-edge, internal 

vegetation structure and leaf dry-matter content [11,77,122,123]. Increased reflectance in the NIR due 

to a higher concentration of vegetation was particularly evident for closed-canopy mangroves. For  

bands 5 (i.e., SWIR: 1.55–1.75 µm) and 7 (SWIR: 2.08–2.35 µm), spectral differences were likely 

explained by vegetation and soil moisture content and, to a lesser degree, various other canopy-level 

biogeochemical constituents [124]. Differences in moisture content, especially in band 7, were able to 

discern between all mangrove types. In addition to distinguishing amongst mangrove classes, our 

findings support previous work demonstrating that measurements at SWIR wavelengths can further 

differentiate mangroves from terrestrial vegetation [125]. In contrast to Kuenzer et al. [11], there were 

additional differences between all mangrove types in visible band 3 (i.e., red: 0.63–0.69 µm).  

Open-canopy II mangroves could also be distinguished from other mangrove types using visible  

bands 1 (i.e., blue: 0.45–0.52 µm) and 2 (i.e., green: 0.53–0.61 µm); however, confusion with exposed 

soil and mud was high at these wavelengths. Subtle differences in moisture content in the SWIR 

provided the increased separability required to distinguish open-canopy II and bare soil classes. 

Figure 3. The mean spectral value (±1 standard deviation) of mapped classes. 

 



Forests 2014, 5 188 

 

 

ML classification results indicate 14,015 ha of closed-canopy, 26,192 ha of open-canopy I and  

5473 ha of open-canopy II mangroves, totaling 45,680 ha of mangroves in the AOI (Figure 4). Results 

further indicate nearly 1000 ha of deforested mangroves found disproportionately near and on the 

peninsula separating Ambanja and Ambaro bays. Overall map accuracy was 93.4% (Kappa 0.9), with 

all mangrove classes mapped with producer’s and user’s accuracies ≥85% (Table 3). Mangrove  

class error was driven by a few incidents of confusion between closed-canopy and open-canopy I. 

Inter-mangrove class confusion can be explained by the similarities in spectral properties exhibited by 

extremely dense young and closed-canopy stands and naturally open and/or highly degraded tall and 

open-canopy I stands. While confusion with other vegetation classes (e.g., terrestrial forest) has been 

reported as a common source of classification error [68], our results indicate this was, in large  

part, avoided. 

Figure 4. Results from the maximum likelihood classification of Landsat GLS 2010 data. 
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Table 3. Confusion matrix for maximum likelihood classification of GLS 2010 Landsat data. 

1 2 3 4 5 6 7 8 9 10 11 Total User’s (%) Commission (%)

Savannah (1) 54 3 0 0 0 0 0 0 0 1 0 58 93 7 

Woodland (2) 0 39 0 0 0 0 0 0 0 0 0 39 100 0 

Active crops (3) 0 0 51 0 0 0 0 0 0 0 0 51 100 0 

Closed-canopy terrestrial forest (4) 0 0 0 54 0 0 0 0 0 0 0 54 100 0 

Open-canopy terrestrial forest (5) 0 4 0 0 54 0 0 0 0 0 0 58 93 7 

Closed-canopy mangrove (6) 0 0 0 0 0 79 9 0 0 0 0 88 90 10 

Open-canopy mangrove I (7) 0 0 0 0 0 11 72 0 2 0 0 85 85 15 

Open-canopy mangrove II (8) 0 0 0 0 0 0 0 52 0 0 0 52 100 0 

Deforested mangrove (9) 0 0 0 0 0 0 0 0 60 0 0 60 100 0 

Exposed soil (10) 0 8 3 0 0 0 0 2 1 53 0 67 79 21 

Exposed mud (11) 0 0 0 0 0 0 0 0 0 0 54 54 100 0 

Total 54 54 54 54 54 90 81 54 63 54 54 666 

Producer’s (%) 100 72 94 100 100 88 89 96 95 98 100 Overall 93.4 

Omission (%) 0 28 6 0 0 12 11 4 5 2 0 Kappa 0.9 
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A comparison with the 24,669 ha of mangrove coverage provided by the 2010 USGS classification 

highlights the shortcomings of localized applications for this national-level dataset (Figure 5).  

While USGS distribution maps provide unprecedented detail and accuracy, they are limited to  

one mangrove class and provide no information on surrounding land-cover categories. In addition, 

while comprehensively representing taller, intact, mature stands, the USGS map depicts 21,011 ha less 

mangroves than our results, underrepresenting the naturally lower stature and more open stands and 

highly degraded areas and completely omitting most scrub ecosystems. This underrepresentation can 

lead to exaggerated loss estimates, as field observations confirm that many of the deforested areas 

identified through analyzing the time series of USGS mangrove maps are occupied by naturally lower 

stature and more open areas and highly degraded stands. 

3.3. Carbon Plot Locations and Ecological Characteristics of Mapped Mangrove Classes 

Figure 6 shows the location of C plots established within mangrove strata. Plot-level measurements 

enabled the summarization of the forest characteristics associated with each mapped mangrove class, 

including sub-class type ecological summaries (Table 4). Open-canopy II plots were comprised of 

sparse and stunted low stature Avicennia marina with extremely open (i.e., <30%) canopies.  

Open-canopy I plots were primarily represented by moderately-dense stands of medium stature 

Ceriops tagal and Rhizophora mucronata with relatively open canopies. Closed-canopy plots were 

typified by high stature stands dominated by Rhizophora mucronata and exhibiting variable density, 

but well-formed canopies. Exceptions to the typical forest characteristics of mapped classes include 

stands dominated by naturally very open and/or highly degraded high stature trees, which were 

sometimes mapped as open-canopy I. In addition, extremely dense moderate stature stands sometimes 

appear as closed-canopy in the imagery. 

At the scale of analysis (i.e., ha-level), there is negligible difference in the spectral appearance of 

areas of relatively open-canopy medium stature trees and those comprised of tall trees that were 

naturally open or had been heavily harvested and/or naturally degraded. While mangrove conversion 

(i.e., deforestation) is reliable for mapping using established methods and readily available Landsat 

data, accurately detecting and tracking subtler modification (i.e., degradation) remains a vexing 

challenge. Whether naturally-induced (e.g., cyclone damage) or resulting from anthropogenic 

exploitation, sub-pixel change in forest appearance is difficult to accurately measure using moderate 

spatial resolution remotely sensed data (e.g., Landsat). This challenge highlights the need to research 

applying methods developed for mapping selective logging in terrestrial forests [126] to assessing 

mangrove degradation. In addition, the synergistic combination of Landsat imagery with 

complimentary remotely sensed datasets, including finer spatial resolution optical imagery and the 

structural information offered by light detection and ranging (LiDAR), needs to be explored further, 

bearing in mind that such datasets can be prohibitively expensive and rarely available in wall-to-wall 

coverage for dates and locations of interest [11]. While further work is needed to allow for partitioning 

existing classes based on their level of degradation, confidently differentiating between natural and 

anthropogenic degradation will remain problematic, even if separable from naturally intact stands. 

Bearing in mind the mangrove class and methodological limitations, observations in forest plots 

confirmed that our broad canopy-cover classes are ecologically rational and associable with 
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statistically distinct C stocks. While the remote sensing of canopy closure is a major topic of research 

for terrestrial forests and previous studies have shown that extremely closed-canopies are indicative of 

forest stands comprised of higher stature trees (e.g., [127]), our results contribute to what  

Heumann [68] summarizes as a comparative dearth of mangrove canopy-closure studies. 

Figure 5. Comparison between GLS 2010 Landsat classification results (top left) and 

single-class USGS 2010 mangrove coverage (top right) for a sub-set of the area of interest 

(AOI). A Landsat Enhanced Thematic Mapper (ETM+) color composite, where band 3 is 

blue, band 5 is green and band 4 is red, is shown for context (bottom left). 
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Figure 6. The location of C plots within classified mangrove strata. 

 

3.4. Carbon Stocks of Mapped Mangrove Classes 

Plot-level biomass estimates were converted to C stocks and scaled to the hectare-level (Figure 7, 

Tables 5 and 6). Closed-canopy mangrove trees had by far the highest vegetation and total biomass 

values. On average, closed-canopy vegetation (i.e., live and dead, above- (i.e., tree) and below-ground 

(i.e., roots)) had an estimated C value of 146.8 Mg/ha (±10.2 (i.e., 1 standard error)) (n = 25). The 

average SOC value for closed-canopy mangroves was 446.2 (±36.9) (n = 22). Open-canopy  

mangrove I had average C values of 42.9 Mg/ha (±5.9) (vegetation: n = 28) and 324.4 Mg/ha (±36.5) 

(SOC: n = 24). Open-canopy II values were lower than other classes for vegetation (i.e., 20.9 Mg/ha 

(±4.6)) (n = 4), but SOC values were the highest of any type (i.e., 517.1 (±76)) (n = 4). The high  

open-canopy II SOC values are most likely attributable to the smaller sample size (i.e., n = 4) and 

additional plots are required in this mangrove strata to more robustly estimate C. 
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Table 4. Class sub-type, species (spp) dominance, average height in meters (m) (±1 standard deviation (SD)), average trees per hectare (ha) 

(±1 SD) and average diameter (d) in centimetres (cm) (±1 SD). Trees/ha (i.e., density) calculated for intact plots. N represents plots per  

class sub-type. 

Class Sub-type Spp dominance Height (m) (±1 SD)
Trees/ha  

(±1 SD) 

d (cm)  

(±1 SD) 

Closed-canopy (n = 24) 

intact, tall, mature stands Avicennia marina 8.6 (n = 1) 1250 (n = 1) 14.9 (n = 1) 

intact, tall, mature stands Ceriops tagal 7.3 (±1.2) (n = 3) 2625 (±318) (n = 2) 10.1 (±0.5) (n = 3) 

intact, tall, mature stands Rhizophora mucronata 7 (±1.3) (n = 14) 4719 (±1133) (n = 12) 10.1 (±3) (n = 14) 

intact, tall, mature stands Sonneratia alba 5.6 (n = 1) 5300 (n = 1) 10.6 (n = 1) 

very dense medium-tall stands Rhizophora mucronata 4.8 (±0.1) (n = 2) 5600 (±1838) (n = 2) 7.8 (±1.1) (n = 2) 

intact, tall, mature stands mixed 6.7 (±1.6) (n = 2) 1825 (±248) (n = 2) 11.3 (±2.5) (n = 2) 

Open-canopy I (n = 28) 

medium stands Ceriops tagal 4.6 (±0.8) (n = 7) 3300 (±849) (n = 2) 7.5 (±1.6) (n = 7) 

medium stands Rhizophora mucronata 4.2 (±0.6) (n = 6) 2160 (±498) (n = 5) 7.3 (±1.3) (n = 6) 

naturally open/very degraded tall variable 5.7 (±0.3) (n = 4) 1525 (±35) (n = 2) 10.1 (±1.2) (n = 4) 

very dense short stands Ceriops tagal 2.5 (±0.3) (n = 9) 2780 (±750) (n = 5) 5.1 (±0.9) (n = 9) 

medium stands mixed 4.8 (±0.1) (n = 2) 1800 (±141) (n = 2) 9.5 (±2) (n = 2) 

Open-canopy II (n = 4) stunted, scrub ecosystems Avicennia marina 1.7 (±0.5) (n = 4) 1306 (±554) (n = 4) 4.6 (±0.2) (n = 4) 
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Figure 7. Estimated average (±1 standard error) above- and below-ground carbon stocks 

(ton/hectare (ha)) for mapped mangrove classes in Ambanja and Ambaro bays.  

Below-ground soil strata depths are in centimeters (cm). 

 

Table 5. Average hectare (ha)-level carbon (Mg/ha) estimates (±1 standard error) for 

mangrove vegetation (dead and live, above and roots), soil organic carbon (SOC) and total 

carbon. Estimates are partitioned by strata. N represents the number of plots per class type, 

with two n values corresponding to trees and soil, respectively. 

Class Vegetation carbon Soil organic carbon Total carbon

Closed-canopy (n = 23; 22) 146.8(10.2) 446.2 (36.9) 593 (39) 

Open-canopy I (n = 28; 24) 42.9 (5.8) 324.3 (36.5) 367.2 (37.3) 

Open-canopy II (n = 4; 4) 20.8 (4.6) 517.1 (76) 537.9 (75.2) 
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Table 6. Average hectare (ha)-level carbon (%), bulk density (g/cm3) and carbon mass 

(Mg/ha) estimates ±1 standard error (in brackets). Estimates are partitioned by mapped 

mangrove class and soil depth strata. N corresponds with the number of plots per class type. 

Class 
Sample depth 

(cm) 
Carbon  

(%) 
Bulk density 

(g/cm3) 
Carbon mass 

(Mg/ha) 

Closed-canopy (n = 22) 0–15 4.8 (0.9) 0.77 (0.08) 41.1 (3.5)
15–30 4.1 (0.4) 0.73 (0.08) 41.3 (3.7)
30–50 4.1 (0.3) 0.73 (0.06) 58.4 (3.9)

50–100 4.2 (0.4) 0.72 (0.06) 155.6 (14.9)
100–150 3.9 (0.5) 0.70 (0.09) 149.8 (17.4)

Total 446.2 (36.9)
Open-canopy I (n = 24) 0–15 3.4 (2.9) 0.78 (0.08) 32.5 (3.8)

15–30 4.4 (3.6) 0.72 (0.07) 43.1 (5.3)
30–50 3.2 (2.6) 0.75 (0.07) 45.2 (5.6)

50–100 3.2 (2.6) 0.60 (0.08) 120.7 (16.9)
100–150 1.9 (2.2) 0.52 (0.10) 82.9 (18.3)

Total 324.3 (36.5)
Open-canopy II (n = 4) 0–15 0.6 (0.1) 1.39 (0.04) 12.1 (0.7)

15–30 0.6 (0.3) 1.28 (0.05) 10.6 (2.6)
30–50 0.8 (0.6) 1.35 (0.06) 22.5 (7.4)

50–100 2.2 (1.2) 1.10 (0.03) 120.0 (28.9)
100–150 6.1 (2.4) 1.18 (0.08) 351.9 (58.1)

Total 517.1 (76.0)

A comparison of our results with existing published C stocks for mangroves indicates that our 

values are comparatively low. For example, mangroves sampled throughout the Indo-Pacific averaged  

1023 Mg/ha, 49%–98% of which were directly associated with organic-rich soils [15]. In western 

Micronesia, specifically Yap state and the Republic of Palau, mangrove C storage ranged from  

479 (seaward) to 1385 (landward) Mg/ha, with 70% of storage in soils [27]. While the C stocks 

reported here are not nearly as high as those reported in the Indo-Pacific and western Micronesia, 

Madagascar’s mangroves are typically of a lower stature, and our soil samples were only collected to 

1.5 m. In addition, our soil samples were analyzed using the Walkley–Black method, which is known 

to under-represent SOC [114–118]. However, as there are few professional laboratories in Madagascar 

that analyze soil, and all employ only this approach, we chose the LRI, given the expense of sending 

samples abroad to be analyzed and the critical need to build local scientific capacity. Future research 

requires setting up the equipment required to conduct more accurate soil analysis in Madagascar. 

Acknowledging the shortcomings of the Walkley–Black, the results provide preliminary conservative 

SOC estimates, which, compared to other terrestrial forest types (e.g., boreal, temperate, tropical 

upland), still support a growing body of evidence that mangroves are amongst the most carbon-dense 

forests in the tropics, with similar above- and larger below-ground stocks than terrestrial  

systems [15,27–30,32–34,38] (Figure 8). For above-ground carbon, our results further support that 

closed-canopies are indicative of higher stature trees, which typically sequester significantly larger 

amounts of C than more open stands [127]. 
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Figure 8. Estimated carbon stocks for Madagascar (±1 standard error) compared with 

published carbon stocks for different forest types. Carbon stocks for non-mangrove forest 

types are taken from [15].  Soil organic carbon comparisons are made to a depth of 1 m.  

 

4. Conclusions 

Owing to a complex and ever-dynamic scene composition, mangrove mapping is one of the  

most demanding tasks in remote sensing [11]. While our mapping results are not without their 

acknowledged shortcomings, they allow for ecologically meaningful stratification associable with 

distinct C stocks. Our simple, yet effective and replicable classification of moderate spatial resolution 

remotely sensed data provides improved detail and accuracy over existing mangrove coverage and 

unprecedented information for surrounding land-cover categories. Our initial C stock estimates are also 

not without their limitations, most notably the Walkley–Black-based estimation of SOC; however, they 

are conservative and can be improved over time. To improve these initial SOC estimates, existing 

samples should be reanalyzed once the equipment necessary to facilitate more robust analysis becomes 

available in-country. In addition, more plots should be established within the open-canopy II strata. 

Current above- and below-ground tree-related C estimates could also be improved through destructive 

sampling and developing Madagascar-specific allometric equations. 

Although preliminary, our results support ongoing initiatives investigating the feasibility of and 

working towards implementing mangrove carbon financing projects (e.g., Reducing Emissions from 
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Deforestation and forest Degradation (REDD)+) and other payments for ecosystem services (PES). In 

particular, the generation of carbon credits through the conservation, restoration and lower-impact use 

of mangroves could make vital contributions to alleviating poverty and safeguarding biodiversity in 

coastal Madagascar. Throughout the tropics, hundreds of REDD+ and PES projects have been initiated, 

yet in few countries are there projects focusing specifically on mangroves (see [128]). 

Our mapping results, supported by extensive field observations, confirm that as of 2010, 

anthropogenic activities, fueled by a diverse and complex range of drivers, including a lack of 

governance and increasing population, had driven substantial deforestation (i.e., 970 ha) in 

Madagascar’s second largest mangrove ecosystem. Ongoing research supports this trend nation-wide, 

and while natural processes, such as forest succession, linked with sedimentological processes and 

cyclone impacts, are important causes of change, Madagascar’s mangroves are facing increasing 

anthropogenic impact. While in certain places, such as the AOI of this study, wide-spread deforestation 

is apparent, the likelihood and long-term outcome of natural or assisted regeneration remains uncertain. 

However, continued degradation and deforestation could compromise, if not discontinue, many of the 

ecosystem services offered by intact mangrove ecosystems. The continued modification and 

conversion of mangrove habitat, if left to proceed unimpeded, could also continue to influence global 

climate through increased greenhouse gas emissions and increase the risk for ripple effects that can 

negatively influence surrounding and closely linked marine and terrestrial ecosystems. The first step 

towards mitigation is quantifying the extent of and contextualizing the reasons for and consequences of 

loss. Here, we have advanced this agenda for Madagascar by presenting the first localized land-cover 

map for Ambanja and Ambaro bays and the country’s first above- and below-ground C stocks. 
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